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Abstract This article presents a ray-based fast marching approach for solving the
static Hamilton-Jacobi equation. The approach is very general and can be used for
both orthogonal and non-orthogonal coordinate system. The method is uncondition-
ally stable, algorithmatically simple and highly accurate. As an application, we use the
method to compute different types of reaction path. Specifically, we consider the path
for which the change in action or time is less than that of all other conceivable paths
connecting two states. Such reaction paths are efficiently evaluated by back-tracing
on the least-action or least-time surfaces. The method is illustrated by applying it to
the collinear reactions, F + H, —- HF + Hand HF + H — H + FH.

Keywords Potential energy surface - Reaction path - Least-action - Least-potential -
Least-time - Ray method - Fast marching algorithm

1 Introduction

Chemists are familiar with the description of a chemical reaction as a smooth progres-
sion along a reaction path on the potential energy hypersurface connecting reactants
with products. Reactants, products and stable intermediates are minima on the hyper-
surface; the transition state is a saddle point with higher energy than the stable struc-
tures. The height of the energy barrier separating reactants from products is related to
the overall rate of reaction. The reaction path provides a microscopic atom-by-atom
and bond-by-bond description of the progress of the reaction, and minima along the
reaction coordinate are associated with equilibrium geometries of reactive intermedi-
ates. The relative energies of the reactants and products determine the heat of reac-
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tion. Although such descriptions are known in the transition state theory, theoretical
techniques for predicting the product(s) of chemical reactions and their associated
reaction paths are extremely limited, even for systems with few degrees-of-freedom.
Needless to say, a general computational framework for predicting the products and
the reaction pathways would be extremely useful.

Conventional molecular dynamics (MD) approaches [ 1] (whether based on classical
Hamilton’s equation of motion or ab initio Carr-Parrinello type [2] MD simulation)
are sometimes impractical for reactions because reactions are rare events, i.e., one
reaction event may be separated from the next by a time much longer than the dura-
tion of a feasible MD simulation. It is impractical to exhaustively map out an entire
potential energy surface, except for very small systems [3]. Methods like Chandler’s
path sampling [4] allow a statistically sound study of the trajectories connecting two
points of the configuration space; however, a sample trajectory must be known.

When direct simulation is impractical, a two-level approach bears consideration.
In a two-level approach, one uses a semi-quantitative description of a reacting sys-
tem to find (approximate) potential intermediates and reaction products. With the key
intermediates and reaction products known, one may then characterize potential reac-
tion paths with established techniques [5—7], obtaining accurate information about the
chemical reaction’s properties. Indeed such methods for characterizing chemical pro-
cesses have been proposed before [8,9]. In what follows, however, the emphasis is on
a general technique, applicable to the widest possible range of chemical phenomena.
To this end, and for developing a general technique for studying reaction dynamics, we
have previously proposed a method [10,11] based on an efficient solution to the Ham-
ilton-Jacobi equation for the least-action path (and a similar equation for the least-time
and least-potential paths [11]). Ideally, in theoretical study of reaction dynamics we
start with the knowledge of the reactant state and want to calculate, without relying too
much on intuition, the feasible product state(s), the transition state(s), the key interme-
diates and the pathway(s). In this regards, the fast marching level set method [12-14]
and the global solution of the classical static HJ equation [10,11,15], supplemented
by a back-tracing method [10], provide a good description of the chemical reaction
dynamics.

The method has been formulated in a manner in which one can naturally bypass
the time-step, dt, and embrace a spatial-step dq=[dg1, dg, . .., dgy]” . This is impor-
tant because the resolution of the characteristic motion of the reactive system can be
significantly different for a fixed dq than that for a fixed dt. For instance, a femtosec-
ond time-step corresponds to an extremely fine spatial resolution of the low frequency
modes of the system. A reasonable spatial step for a low frequency motion corresponds
to several hundred dt in a standard MD simulation.

Previously, we showed how the fast-marching method could be used to find var-
ious classical [10,11,15] and tunneling [16] reaction paths for several reaction sys-
tems. Although previous fast marching methods are unconditionally stable, highly
efficient and algorithmically simple, they suffer from the following drawbacks. (1) The
method is accurate only to first order since it is based on a two-point finite-difference
formula for the differential operator in the HJ equation. This low-order approxima-
tion can result in relatively large errors in the global solution (such as the minimum
action/time/potential), particularly in two cases [17], namely, (a) when there is a large
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wavefront curvature, such as near the source; (b) when the wavefront propagation
is diagonal to the grid orientation. This low-order approximation FMM scheme also
demands very fine grid space. (2) The method can be applied only to an orthogonal
coordinate systems [12—-14] (e.g., Cartesian coordinate) [10,11,16] (For non-orthog-
onal coordinate systems a coordinate transformation is needed [11,16]) unless the
kinetic energy is unimportant in the dynamics (e.g., for the minimum potential energy
path [11]). Although alternative fast marching methods for unstructured grids (triangu-
lated meshes) [18,19], higher-order finite difference formulas [20,21], non-orthogonal
coordinate [17,22] systems, and a fast sweeping method [23,24] (FSM) exist in the
literature, these methods have greater algorithmic complexity and restrictive applica-
bility. No one has ever implemented these more complex fast marching methods in
chemical reaction dynamics.

This paper presents a very general new fast marching method based formulation for
solving the HJ equation. This method does not reuire the use of the finite-difference
approximations for the derivatives and hence reduces the inaccuracy of the conven-
tional FMM based on finitite-difference approximations; this method can be applied to
any coordinate systems without any additional effort as the coordinate system changes;
this method is unconditionally stable, highly efficient and algorithmically simple; this
method can be applied across a broad range of problems, from image processing, to
computer visualization, to several geophysical problems. This method can also be
used to find chemical reaction paths which is our primary interest.

The remainder of this paper is organized as follows. In Sect. 2 we describe the
method. In this context we briefly discuss the least-action and the least-time paths
based on classical mechanics, the HJ equations for the action, time, and potential
energy, and existing methods for solving the HJ equation. The algorithmic details of
the present method are presented in Sect. 3. Illustrations are made in Sect. 4. Here we
compute the paths for the reactions, F+H, — HF+Hand H4+FH — HF+H
represented in a non-Cartesian coordinate system. Section 5 concludes the paper.

2 Theoretical development
2.1 Least-action/least-time/least-potential paths

Mathematically, the principle of stationary action [25,26] can be stated in its Lagrang-
ian,

final
8/ P-dQ =0, (1)
initial
or Hamiltonian form,
final
5 / Ldt = 0. ®
initial

Here P and Q are the generalized atomic momentum and position vectors and L the
Lagrangian. We may enunciate it as follows: a system moves from one configuration
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to another in such a way that the values of the action integral for the path taken and the

neighboring virtual paths are the same (to first order). Such virtual paths are either co-

terminus in space (same end points) and energy (Lagrange’s principle) or co-terminus

in space and time (Hamilton’s principle). All of these virtual paths are potential paths.
The action can be written (we use mass-weighted coordinates with m=1) as

S = /2Tdt - /Z(E — V)dt =/,/2(E —V)ds 3)

Substituting potential energy by its average value (V) over the interval, we get S =
2(E — (V))At. Thus the minimum action path can correspond to a trajectory that
climbs up on the potential energy surface in the direction of the final state minimizing
this product. This means that minimum action paths tend to pass through high energy
regions of the potential energy surface, because the kinetic energy is smaller there.
These high-energy paths are improbable dynamical events. (For small E however, the
minimum action paths sometimes represent more likely dynamical events.)
Similarly the time a system spends traversing a path can be written as

-1
z/ﬁz(/m) ds @)

where v is the velocity at any point along the path. The stationary time principle is then
given as 6t = 0. Clearly, high velocity reduces the transit time and the least-time path
tends to avoid molecular configuration with high potential energy. The path a light
ray follows (Fermat’s principle), and the path of a particle constrained to a curve and
under the influence of gravity (Brachistochrone) are two examples of least-time paths.
Minimum time paths may represent the more realistic reaction paths since, unlike
minimum action paths, they stay in the relatively lower energy region of the PES.
Similarly, defining a function, 7" ag [11]

™ =/(\/2(E - V))"+1 di = / (,/2(E - V))"ds (5)

we see that for large negative value of n, ™ decreases as V decreases. Thus, the
path corresponding to minimum 7 is the minimum potential energy path, in other
words, minimum ¢ paths for n = —oo tend to follow the lowest energy region of
the potential energy surface.

2.2 Hamilton-Jacobi equation

Consider the 3N dimensional vector X=(x1, x2, ..., x35). vector representing the
position of the atomic nuclei in the Cartesian coordinate system. The vectors Q =
Gy .-, q3N)T andR = (Ry, ..., RM)T represent the mass-weighted and the inter-
nal coordinate (non-Cartesian) system of the molecule, where g; = ,/m;x; denotes
the mass-weighted position vectors for the nuclei i and M denotes the total number of
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internal degrees of freedom. The corresponding momentum vectors are Py, Py and
Py respectively. In order to obtain a general form for the Hamilton Jacobi equation
in a general coordinate system we start with the function 7™ and the mass-weighted
coordinate system. In the end we will transform the equation to curvilinear coordinate
system. Thus we have,

Qr n+l
Qo). Qe = [ (VETQ®)" ar

Qo
Oy n+1

=/ ( 2(E—V(Q(t)))) dr ©)
Qo

Here the relations 7 = 1/2P{,M~'Pg and Py = MdQ/d have been used. M is
the mass matrix. In the above equation V(Q) is the potential function and E is the total
energy of the system. The time variable in the above equation is not an independent
variable since it depends on the path. A rigorous definition of path can be made by
parameterizing the curve using the line element s(®), for the trajectory (® denotes
the parameterization of the path.) [27,28]. The time it takes for a particle to cross a
given point on the curve is related to the velocity, ds(®)/dt at that point. This gives
2T = (ds/dt)? [27] and so

o 1ds(O)]
t = (7
V2(E —VQ(O)

Since |ds| = />_(ds;)? and ds; = ds;/9Od O we obtain

di — | Ds(©)] 16 )
V2(E - V(Q(©)))

where [Ds(©)| = /> (3s;/3®)2 and s; corresponds to the component of s along ¢;.

Equation 7 now can be written as

s Ds(®
t™(Qo(t0), Qy (1)) = / |Ds(©)] o

o0 Q2(E = V(Q(O))"/?

One can immediately obtain the differential form for the above integral equation (Eq.
10) (see [29]) (from now on, we simply write 7 (Q) for 7™ (Qq(t9), Qy(ty)) fora
fixed initial configuration).

VT (Q)|

GE—vioppE =" o V@ Ve Q = RE -V (10)

This is a general form for the Hamilton Jacobi equation (eikonal equation) in mass-
weighted orthogonal coordinate system. For n = 1, we have the classical Hamilton-
Jacobi equation and so 7 = § (Eq. 3) is Hamilton’s characteristic function (classical

@ Springer



986 J Math Chem (2009) 45:981-1003

action). Forn = —1 the function -V = 1 (Eq. 4) is the time function. For n = 0 the
function 7(? is the distance function, which can be used to generate geodesic curves.
The Hamilton-Jacobi equation is readily generalized to a general coordinate system,
denoted by R, as

VTP R)TG(VT™R)) = [2(E — V(R)]", (1D

where G defines the metric for the transformation from Q to R, the elements of which
are G;; = 0R;/dq;. In general, G depends on the coordinate however, in our exam-
ples, the metric G is a constant metric. When G is a unit matrix we get the orthogonal
coordinate system. We propose a general algorithm to solve this Hamilton-Jacobi
equation and obtain the least-t " level curves. The algorithm is described below.

2.3 Solution of HJ Equation: existing method

Using a ray-based fast marching method (see the next section) supplemented by back-
tracing as described in the later sections, we solve Eq. 11 for the least-t " (where the
costis the action, the time or the potential) paths. The HJ equation above describes wave
front propagation [14] with the “speed” of the wave front related to 1/[2(E — V)]".
(Here the definition of the “speed” is the change in distance for every unit change in
the value of 7(™.) Consider a wave front given as I'"” (a) = {R € RY; 1™ (R) = a}.
(Fi”) is also called the a-level curves which are a set of points R € RY for which
the value of 7™ is a.) The propagation of these wave fronts depends on the “speed”
function values on the wave front. The “slowness” function is similarly defined as
[2(E — V)]". Solving Eq. 11 by a ray-based FMM we obtain the least-t ™" value for
every conceivable configurations of the molecular system. From the least-t value
we determine the paths knowing that the vector V¢ for points on the level curves of
7 is perpendicular at that point [30]. The method for calculating the paths is called
back-tracing and is described in later sections.

Equation 11 is a first-order partial differential equations of second degree; exact
solution of this equation is usually impossible. The method of characteristics [31,32]
and the finite difference methods [33-35] are two widely used methods for solving the
HJ equation. The use of the method of characteristics followed by interpolation is a
popular and robust method for solving HJ equation, this reduces the partial differential
equation to a set of ordinary differential equation (for instance, Hamilton’s equations),
the characteristic curves of which can cross depending on the potential. Thus, when
the value of ™ between a given source point (Rg) and any other point (R) in the con-
figuration space is sought, the method of characteristics delivers multiple values (weak
solutions). In cases where actions on a grid of points are required, the interpolation of
the ray-traced actions is essential, which makes the method even more complicated
and time-consuming. The finite difference method on the other hand, attempts to track
the wavefronts rather than the rays. A major advantage of this method is that the data
are directly calculated on a grid of points, so no subsequent interpolation is required
and the function is constrained to be single valued [33]. However, finite difference
approximations to this type of hyperbolic partial differential equations may develop
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singularities or shocks as they propagate, even if the initial wavefront is smooth.
Osher and Sethian [30] noted that these shocks were avoided if one took the “viscosity
solution” [36] to the Eq. 10; this led them to develop the level set method (LSM).
The fast-marching method (FMM) of Sethian [12,13] adapts the LSM technique to
compute the least arrival time by solving the eikonal equation. However, LSM and the
FMM are based on a first-order finite-difference formula for the derivative on a Carte-
sian grid. In order to apply their FMM to molecular problems it is necessary to devise
a different FMM which is applicable to any coordinate system. This is discussed in
the next section.

3 Numerical evaluation of the least-t ™ surface and the reaction paths

3.1 Ray-based Fast marching method for a general coordinate system:
finding least-t " surface

The Fast marching method is a minimization scheme which numerically solves the
eikonal equation 1/F|VU| = 1 for the minimum value of U(Q) at point Q. This is a
minimization technique because it models only the wave that originates at the initial
point, Q, and terminates at Q and minimizes U; waves arriving at Q with larger values
of U are totally filtered out. The fast marching method was originally proposed by Se-
thian and has been applied to solve numerous scientific problems e.g., image process-
ing, computer vision, fluid mechanics, obstacle navigation, path planning, and moving
interfaces. Here we adapt the method to solve the HJ equation (Eq. 11) in a general
coordinate systems; in particular, we describe a ray-based updating algorithm below.

The method is described for a two-dimensional system. Extension to many-dimen-
sional system is straightforward. The initial reactant configuration is defined as Ry =
(RY, Rg). A compact wave is generated at the reactant configuration and then expands
to engulf the entire classically-allowed region of the reacting system. Without any loss
of generality, we can always consider the initial point to have " (R¢) = 0.

For numerical purpose this system is defined in the rectangular domain (R’f’i",
Ry x (RE’”", RJ“Y), which is partitioned into Ng, x Ng, cells of uniform size
ARy x ARy with their vertices R;j = (Ry;, Ry;) = (R{"" +i ARy, Ry + jARy).
We now briefly describe the algorithmic steps associated with the fast marching method
with emphasis on the ray-based updating procedure.

First, tag the point corresponding to the initial reactant Rg as alive, where tl.(O"J{) is
zero ((ig, jo) refers to the reactant state in the discrete grid). Then compute 7 at all
eight neighboring points ((ip &= 1, jo & 1), (ip, jo £ 1), and (ip &= 1, jp)) in the first
narrow band; these points are tagged as close. The remaining grid points are tagged
as far and assigned ™ — >o00. The FMM loop is carried out as follows.

Step a: Choose the point in close that has the smallest 7 (this involves sorting the
close points of the narrow band). Call this point trial. Remove trial from close points
and add it to alive.

Step b: Tag as close all neighbors of trial that are not alive. (If the neighbor is in far,
remove it from that set and add it to the set close).
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Step c: Recompute T at all the close neighbors of trial. This stage is called updating,
and it is performed using the new technique described below.

Step d: If there are no more close points or if a stopping criterion is achieved, then
the precedure is complete. Otherwise, go to step a.

Figure 1 presents a schematic view of the FMM algorithm describing how the close
points in the narrow band become alive points and how the narrow band changes from
the one at the initialization stage. Note that the leading term in the computational cost

O 0O 0 0O 0O O 0O|lO O O O O O O|l0O O O O O O O
© 00 00 OO0 O0O0O0O0O0 0|00 O0O0® OO
O O x--x==x O 0|0 O --x-® O 0|0 O >‘<~S®’/ e ® O
O O ¥ ®,x O 0|0 O x © € ® 0|0 O x ® @ x O
O 0 %-x--% 0 0|0 0 %x-x-& 0 0|0 0 x-x--x 0 O
O O 0O O O O O|lO OO O O O Ol0O O O O O O O
O O 0O O O O O|lO OO O O O O0OlO O O O O O O
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O 0O 0 0O 0O O 0O|lO O O O O O O|l0O O O O O O O
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© 0 x ® ® ¥ 0l0o0O® ® @ x 0|0 ® © ® ® x O
O 0 x-%x--x 0 0|0 0 %--%x--x 0 0|0 0 ®-%x--x O O
O 0O 0 o0 0 O O0l0oO OO O O O O0O|l0O O O O O O O
O 0O 0o o0 0O O O0l0oO OO O O O O0O|l0O O O O O 0 O
4-th narrow band 5-th narrow band 6-th narrow band
O 0O 0 0 0O O 0O|l0O OO O O O O|l0O O O O O O O
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o & e @-x 0 o0 x e ¢ T 0 O|0O x ®© ® @ ® O
o o 0 0 0|lo 0 x-& 0 0 0|0 0 %x--x--& 0 O
O 0O 0 0O 0O O O0|l0O OO O O O O0Ol0O O O O O 0 O
7-th narrow band 8-th narrow band 9-th narrow band

Fig. 1 Schematic diagram depicting different grid points for the narrow band. The narrow bands are
obtained during the fast marching loop. The 1-st narrow band (first column, first row) is the one obtained
at the initializing stage. Here the grid points with open circle, cross, cross in the circle, black dot and black
dot in the circle represent far, close with no updating of the function value, close where function value will
be updated, alive and initial (reactant) points respectively. Label s refers to the point wit smallest function
value among the close points. Points on the broken line constitute the narrow band
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of the fast marching algorithm comes from the step (a): that is, choosing the ¢rial point
on the narrow band with the smallest value of 7. Consequently, the cost should not
depend strongly on the updating stage, but rather the sort algorithm used. Heap sorting
[37] has a cost of O(logN), and so in principle, with the present algorithm, the fast
marching method has a cost of O (NlogN), where N is the total number of grid points.

3.2 Updating procedure

Now, we elaborate on the updating procedure needed for step (c) of the FMM loop. Let
R®W = [Ri“), Réu)]T be a close neighbor of the trial where the value of 7™ will be
recomputed (updated). This point is represented by (i,j) in the 2D discrete grid. A four-
point updating or an eight-point updating (or even more) can be done. The four-point
updating uses the points RV = (i—1,j), R?® = (i+1,j), R® = (i,j—1) and R® =
(i,j+1) to update the value at (i,j), whereas the eight-point updating uses the points (see
Fig. 2) RV = (i—1,j), R® = (i—1,j—1), R® = (ij—1), R® = (i+1,j—1), R® =
(i+1,)), R©® = (i+1,j+1), R? = (i,j+1) and R® = (i—1,j+1). In the original FMM
of sethian [12] only a four-point updating is implemented. The present algorithm is
applicable to updating using any number of neighboring points and is also applicable
to structured or unstructured mesh and to any type of coordinate systems. Here we
discuss the 8-point updating procedure only. Updating based on more than eight points
can be done similarly.

ix-1,iy-1 ix,iy+1 ix+1,iy+1
N ) 5
0 2
N | 7/
N 7/
A | 7
AN | 7/
N 7/
N | s
N | 7
AN 7/
N } L
o A Y
N 7/
N\ | s
N | 7
AN /
N | /
N e
Ag N } , As
A /
Nz
N /X iy
. N,/ s . .
ixliy > R 2 ix+1,iy
) AN 1]
e | N
7/ N
// ‘ \\
A ‘ A
Ve N
1 s | N 4
’ | N
/ A
s | N
/ | N
/ | N
// | \\
e AN
, AQ | Ag N
s | N
v | N
e | AN
7/ N
7 | N
7 N\
N %) )
ix-1,iy-1 ix,iy-1 ix,iy-1

Fig. 2 Diagram depicting the triangles for a 8-point updating procedure. Point (ix,iy) is where the updated
value of 7 is computed. Only the upwind points (and hence the corresponding triangles) are required for
updating
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1. Designate eight triangles (see Fig. 2) formed by the eight points as A; =
AR®) R® Rw> A2 = AR@ R®) Rw> A3 = ARe) R@ Rw> A4 = ARw RG) R,
As = ARe) RO Rw> A6 = Ag© RD Rrw> A7 = Agm ge rw and Ag =
Ag®) g gw - Here Ag b, represents a triangle formed by the grid line segments
connecting the points a, b and u with u being the point where the 7 will be
computed.

2. The updated value of 7" at R™ is given by

(n) N n) _(n) _(m) _(n) _(n) _(n) _(n) n)
updated(R(u) MIin(Tas Ta s Tay s Tay s Tags Tag s Tag TA)

where rXi) is the smallest solution of the ray-based procedure applied to the trian-
gle, Aj.

3. We note that not all of the eight triangles will always contribute to the above equa-
tion since causality implies that points with values of 7 that are larger than the
point in question do not contribute. This causality requirement is the essence of the
upwind derivative scheme.

3.3 Ray-based updating procedure from the triangle, A, 5 ,:

Figure 3 depicts a wave front emanating from the source (the initial point, R®) and
arriving at the point that is being updated (u). We need to find the minimum value of
7 at the point, u, using the known values of (™ at points a and b. R® R@ agnd R®
are the position vectors for points u, a and b respectively, in the general coordinate
system. The corresponding position vectors in the orthogonal co-ordinate system are
Q®, Q@ and Q™ which are obtained as Q = P” R where the matrix P diagonalizes
the matrix G of Eq. 10, thatis, G = PHP” . We assume the wave front emanates from
the source, passes through the line segment, a-b, (Fig.3) and arrives at the point, u,
so that the value of 7™ at u is minimum.

We now suppose that the wave front while reaching the point u intersects the a—b
line segment at the transit point, t. The position vector of the transit point is Q) (see

Fig.3). The functlon Value at the various positions are 7., Zg"), ™ and 7" among

which only 7" ) and rb ) are known. The position vector, Q(’ ), can be parameterized
with the parameter 0 < ¢ < 1 so that for ¢ = 0, Q¥ = Q@ and for ¢ =
Q® = Q® . This gives

Q" =(1-0)Q +¢Q” (12)

The function value at the point, Q") is now approximated by a linear interpolation
formula

i =1 -0t 4. (13)
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o

Fig.3 Schematic diagram depicting the wave front reaching the point, u, where © ) needs to be computed
variationally. (™ at the points a and b are known. The thick vector line shows the direction of the wave
front from the source (not shown) to the point, u. Here t is the transition point that the wave front transits
through to reach the point, u. Position vectors in the general coordinate systems, are R(“), R(a), R® and
RO for the points u, a, b and t. O refers to the origin in the transformed coordinate system, where Q(“),
Q(”), Q(b) and Q(’ ) are the position vectors in the transformed coordinate system for the points u, a, b and
t. 01 and 6, are the angles of incidence that the direction vector of the wave front make with two sides of
the triangle, Ay 4,

Now we need to find what extra T is gained when the wave front travels along the
line segment t—u. If v is the “speed” function for the wave front then the front travels
a distance of v for unit change in . So the extra gain in ™ is d(¢)/v = od(¢),
where d(¢) is the Euclidean distance between Q) and Q™ and ¢ = 1/v is the
“slowness function. So, 7 at Q) is given by

1 =1t od@) = (1 - )1 + " + od(Q) (14

According to the minimum-7™ principle (e.g., minimum action, minimum time or
minimum potential), the actual path is the path of minimum 7 with respect to the
perturbations of the wave front at Q). Since the wave front at Q") is parameterized
with respect to ¢, we minimize T by solving arLS”) /0¢ = 0, where ‘L’,,En) is given by
Eq. 14. The optimal value for ¢ is obtained by solving the equation

T‘gn) _ Tlfn)

=d' (). (15)
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The functions d(¢) and d’(¢) are given as

d(§) = \Jd2, + £2d2, = 20QW — Q@) - QP — QW) (16)
and

¢dp, — Q" — Q) - Q" — Q)

d'¢) = a0

a7

respectively, where dj, and d,,, are the Euclidean distances |ba| and |ua|. Substituting
d'(¢) into Eq. 15 we get a quadratic equation for the unknown ¢ whose solutions are

2
(n) __(n)
772 — 42 (Ta ) )
ua
n 772 o

{+ = - + 7~ (18)
d d m _m\ 2
ba ba 2 2 T, —T,
dba (dba - ( o . ) )

where n = (Q® — Q@) . (Q® —Q@). The value of £ must be between 0 and 1. The
updated value at the point, u, depends on the following different situations for the ¢.

1. If the term under the square root of Eq. 18 is negative then we do not evaluate the
¢+. In such a case, the updated value at the point, u, is given by

Tu(n) = min(ré") +dy, X o, Tlgn) +dup X 0) (19)

where dyy = |Q®™ — Q@ | and d,p, = |Q™ — Q®| are the distances |ua| and |ub|
in the transformed coordinate.

2. If only 0 < ¢4 < 1, then we calculate

o = - er” + ity (20)

Now we have to calculate cos61, and cost where 01 and 6, are the incident angles
that the wave front makes with the two sides of the triangle A, ., (see Fig.3)
where cos0; and cos6, are given by

(Q(a) _ Q(u)) . (Q(t) _ Q(u))
Q@ — QW |[|QW — QW]

cost =

and

(Q(t) _ Q(u)) . (Q(b) _ Q(”))
QW — QW |[IQ®) — Q)|

costh =
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Here Q) = (1—2)Q@W 4+, QY. If1/v/2 < cosf; < land 1/4/2 < cost, < 1
(for a 4-point updating scheme the conditions are 0 < cosf) < 1 and 0 < cos6, <
1), we take IJ(rn) as the updated value, TLS") at the point u. Otherwise, updating will

be done by using Eq. 19 in step 1.
3. If only 0 < ¢_ < 1, then we calculate
ALY (RO 1 Oy SR Q1)

Similarly, now we have to calculate cos81, and cos6, for ¢_ as described above.
If 1/3/2 < cosb; < 1 and 1/4/2 < coshr < 1, then we take ™ as the updated
value, ru(") at the point u. Otherwise, updating will be done by using Eq. 19 in step 1.

4. If ¢4 and ¢_ are both between 0 and 1 then we have to take the minimum of the
updated values in step 2 and 3.

After the fast marching procedure is complete, we have a conical surface 7 (Q),
where the bottom of the cone is at 7 (Qg) = 0. For any molecular configuration of
interest, Q, the least 7 path is simply the steepest descent path to Q starting at Q.
This path can be found by repeated steps in the direction V™ (Q)/|IVT™(Q)||. The
gradient can be evaluated using finite differences or radial interpolation [38,39], for
example.

4 Ilustration with F+H,; and H+FH

Here we describe the calculation of the least-action (z(1)and least-time (z(~1) reac-
tion paths for two collinear reaction systems, viz., F+H, — HF +H and HF+H—H+
FH. These are the simplest reactions with curvilinear coordinate systems with the
metric G given by

1 1 1 1

T WHF  2UF
12 | | and G= 1 1 : (22)
T 20H, MHF " 2ur, wnr

G =

for F+H*H? and H?+FH? systems respectively. This system is specified by two coor-
dinates Ry and R, corresponding to the bond distances H—H” (F—H” for H+HF) and
F-H* (H*-F for H+HF) respectively. The potential energy surface as a function of R
and R; is given by Stark et al. [40] in a many-body expansion form

Vasc®) = > VIV + > VO(R,) + V) (Ras. Rc. Rac)  (23)
[ n

1

where Vi(l) (i=A,B,C) are the energies of the atoms, V,,(Z) (n=AB, BC, AC) are the
diatomic potentials of AB, BC and AC, and Vﬁ;c is a three-body potential, which
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should become zero at all dissociation limits. In our examples, the index A refers to
the F-atom (H-atom for H+HF), B to the H-atom (F-atom for H+HF) and C to the
H-atom (H-atom for H+HF).

The diatomic potentials were expressed by extended Rydberg functions

Vn(z) =—D.(1+ajx +ax* + azx>)e ™" + a4 (24)
where D, is the dissociation energy of the corresponding diatomic and x = R, — R;.

The parameters a4 is chosen so that V4pc(R) becomes zero at the asymptote. The
three-body term V/S; ¢ Wwas expressed [41] as a polynomial of order M,

M
3 P
Vlilg)C(RAB,RBC,RAc)= E dijipy 5 opePhc (25)
ik

with the constraints i+j+k<M and i+j+k# i7# j# k. The variables p, (n=AB,BC,AC)
is given as

pn = Rye— % Ru=RD (26)

This potential was obtained by fitting the ab initio points on the potential energy
surface calculated by the multireference configuration interaction method [42]. The
parameters associated with the above potential are given by Stark et al. [40]. Table 1
lists the energy values for different configurations of the F+H; and H+FH systems.
Using this potential we solve the Hamilton-Jacobi equation (Eq. 11) for the least-
action (n = 1) and the least-time (n = —1) following the fast marching technique
described in Sect. 3. The starting point where the action/time is zero is considered as
the reactant configuration near the entrance channel, Ry = (1.4, 5.0) for F+H, and
(1.74, 4.0) for H+FH (see Table 1). The product is the exit channel with R=(>2.0,
1.74) for both F+H;, and H+FH reactions. Since in the FMM we obtain the least-action
value for every discrete configurations, every point is a potentially important either as
a product or intermediates. Hence in evaluating the path we consider varying final state
configurations which are not necessarily the product configurations given in Table 1.

Table 1 Energy values for different configurations of the F+Hp and H+FH

E (kcal/mol) R (Bohr) R> (Bohr)

F+H) reaction

Reactant F+H, —1.6 x 1072 1.4 5.0

Product FH+H —31.33 5.0 1.74

Saddle point F-H-H 1.92 1.442 2.95
H+HF reaction

Reactant H+FH —-29.1 1.74 4.0

Product HF+H —-29.1 4.0 1.74

Saddle point H-F-H 9.77 2.125 2.125
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Fig. 4 Least-action (‘L'(l)) level curves of the collinear F+Hy system at different energies (in kcal/mol)
plotted as a function of Ry = Ry, and Ry = Rp . The reactant (initial) state with S=01s given by Ry=1.4
Bohr and Ry = 5.0 Bohr

In the numerical calculation for the least-action (Fig.4 for F+H; and Fig.5 for
H+FH) and least-time (Fig. 6 for F+H, and Fig. 7 for H+FH) level curves the grid size
is 0.8 < Ry (Bohr) < 5.0, 0.8 < R, (Bohr) < 6.5 for F+H, and 0.5 < R; (Bohr) <
5.0, 0.5 < R, (Bohr) < 1.0 for H+FH. We discretize each dimension into 150 small
segments, thus we have a total of 150x 150 discrete points. Each of these discrete
points are a potential configuration of the reactive system. The least-action/least-time
is calculated by fast marching method for all classically attainable configurations,
that is, all configurations where E > V;;. The FMM starts with initialization which
consists of (1) defining an initial configuration, Ry = (RY, R(z)) (which is the reactant
configuration), (2) finding the associated indices (i, jo) and setting the action/time
values to be zero at this point, (3) defining the energy. The FMM procedure described
in Sect. 3 is then commenced.

The least-action level curves in Figs.4 and5 show that the level curves extend to
the regions of high potential as the energy values are increased. These figures reveal
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Fig. 5 Least-action (r(l)) level curves of the collinear HY+FH? system at different energies (in kcal/mol)
plotted as a function of Ry = Ry and Ry = Rya p. The reactant (initial) state with S=0 is given by
R1 = 1.74 Bohr and Ry = 4.0 Bohr

the shape of the least-action wave fronts that emanate from Rg and spread over the
classically attainable regions. The action values of the level curves increase with
increasing distance from the initial configuration. Using the fact that the momentum
vector P = V1, is normal to the surface of equal action and points in the same
direction as the local unit normal Vz (D /|V(|, we immediately get a pictorial rep-
resentation of the reaction path for the reaction Ry — R from Figs.4 and 5. The
presence of cusps on the least-action level curves seen in Figs. 4 and 5 as sharp corners
makes it difficult to evaluate the gradient there. Such cusps develop at a least-action
value where the potential, V is small (hence the kinetic energy is large) giving rise
to [Vr(D| £ 0. Since cusps develop in the low potential energy regions, numerical
evaluation of low energy least-action path is difficult.

We also calculate the least-action paths for a high energy reaction E=_80kcal/mol
in Fig. 8. Several paths labeled a and b for the reaction F+H; and a,b,c for reaction
H+FH are calculated and shown in Fig. 8 on the potential energy surface. These paths
correspond to back-tracing from different product configurations, viz., (2.5, 2.4) (label
a) and (2.6, 2.4) (label b) for F+Hj; reaction and (3.1, 2.1) (label a), (4.0, 2.1) (label
b), (4.3, 2.1) (label ¢) for H+FH reaction. Since at the initial point, T (Rg) = 0,
may be thought of as shrinking a closed level curve to a single point, the construction
of level curves around this point corresponds to considering every possible choice
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Fig. 6 Least-time (r(_l)) level curves of the collinear F+H, system at different energies (in kcal/mol)
plotted as a function of R = Ry, and Ry = Rpp. The reactant (initial) state with S=0 is given by
R| = 1.4 Bohr and R, = 5.0 Bohr. Least-time paths are also shown. Only the path for E=8.0 goes over
the saddle point, all other paths deviate from the saddle point and passes over the higher energy regions of
the potential energy surface (also see Fig.9)

for the gradient v (R) |R=R, (that is, the initial momenta) consistent with the total
energy of the system. Fast marching method ensures that we find one of the “ideal”
initial momentum, P for which the reaction Ry — R occurs without the reactants
spending much time (thus, the typical oscillations are removed) between the reactive
event. The least-action paths shown in Fig. 8 for E=80 kcal/mol are reflective of this.
We observe that the least-action paths for E=80 kcal/mol ( label a for F+H; and a,b
for H+FH) travel towards the classically-allowed high energy regions of the potential
energy surface in order to form the product, the corresponding initial momenta for these
paths can be obtained as Vt(l)(R)|R=RO. This is in consistent with the discussions in
Sect. 2.1.

The product configurations (2.6, 2.4) for the reaction F+Hj cannot be traced back
to the reactant configuration as seen in path labeled b. The back-traced paths from
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Fig. 7 Least-time (t=D) level curves and the corresponding paths of the collinear HY+FH? system at
different energies (in kcal/mol) plotted as a function of Ry = Ry and Ry = Rya . The reactant (initial)
state with S=0 is given by R; = 1.74 Bohr and Ry = 4.0 Bohr. Only the path for E=10 goes over the
saddle point. All other paths deviate from the saddle point and passes over the higher energy regions of the
potential energy surface (also see Fig.9)

these product states tend to cross the potential energy contours >80 kcal/mol (Fig. 8
upper panel) and hence they do not connect to the reactant states. Such paths and
the corresponding products are dynamically insignificant and do not contribute to the
dynamic properties of the reaction. Similarly, for the reaction H+FH the path c and the
corresponding product is dynamically irrelevant. As has been discussed in Sect. 2.1,
the high-energy least-time paths of Fig. 8 represent less probable dynamical events
even though they correspond to one of the stationary action paths. Such paths are
not kinetically relevant since they follow high-energy regions and are not associated
with any of the transition states. Low-energy least-action paths, although difficult to
calculate since V7! is undefined at the cusps, are however, dynamically important
events and can only be understood pictorially.

The least-time (t (1) surface however, is devoid of cusps since V1D s related
to 1/+/E — V. This is seen in Figs. 6 and 7 which depict the least-time level curves
for F+H, and H+FH reactions respectively. The time value is zero at the reactant con-
figuration (Table 1 for reactant configuration) which increases with the distance. As
the energy increases we see that the least-time level curves extend over high energy
regions of the potential energy. The level curves are much smoother than the ones
for the least-action. Being devoid of cusps, the gradient V(=1 is defined at every
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Fig. 8 Least-action (M) paths for F+Hy (upper panel) and H+HF (lower panel) reactions calculated by
back-tracing at E=80 kcal/mol. The paths are shown on the potential energy surface. Labels a, b and ¢
correspond to different paths

point on the level curves. This makes it easier to compute the paths following the
back-tracing method. Indeed we can compute a large number of paths with one of the
end point being the reactant state, however, we are interested in the paths that connect
the reactant with a product state given in Table 1.

Reaction paths are shown on the least-time level curves of Figs.6 and 7 for
different energy values. The calculated least-time paths for the reaction event (1.4,
5.0) — (4.0, 1.74) for the F+H; system and (1.74, 4.0) — (4.0, 1.74) for H+FH
system, traverse the low energy regions of the potential energy surface (also see Fig. 9
for the least-time paths plotted on the potential energy surface), unlike the least-action
paths of Fig. 8. Some of the least-time paths cross the potential barrier near the saddle
point (1.442, 2.95) for F+H; and (2.125, 2.125) for H+FH, in the PES to get to the
product state. These are the paths calculated for low E. Such paths represent more
probable dynamical events. Least-time paths plotted on the potential energy surface
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Fig. 9 Least-time (=) paths for F+Hy (upper panel) and H+HF (lower panel) reactions calculated by
back-tracing at four different energy values shown in the respective least-time level curves of Figs. 6 and 7.
The paths are shown on the potential energy surface. Low energy paths are very close to the saddle point
whereas the higher energy ones deviate from the saddle point as energy increases

in Fig.9 show that the barrier heights increase with increase in the energy for both
the reactions. The barrier crossing at low energy takes place very close to the saddle
point which however, starts deviating from the saddle point as energy increases. For
example, data in Table 2 show that at E =8 kcal/mol the barrier crossing for the reaction
F+H; occurs at (Rb, R§)=(1.46, 2.93), while the saddle point lies at (1.442, 2.92).
Similarly, for the reaction H+FH at E=10 kcal/mol the barrier crossing takes place
at (RY, R%)=(2.126, 2.129) which is very close to the saddle point (2.125, 2.125).
Table?2 gives information about the final configuration and the barrier configuration
along the least-time path for different energy values. The time the path takes for the
reactions F+H, — FH+H and H+FH— HF+H decreases as the energy increases, in
other words, the reactions are faster for high energy. The barrier crossing times also
decrease with increase in energy as is seen in Table 2.
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Table 2 Datas at two different points (the final configuration (superscript f) and the barrier configuration
(superscript b)) along the least-time paths

E(kcal/mol) o/ (fs) b (fs) (RY. RY) (Bohr)
F+H; reaction
8.0 1.016 0.537 (1.46,2.93)
15.0 0.779 0.40 (1.53,2.86)
40.0 0.506 0.264 (1.81,2.75)
80.0 0.357 0.187 (2.18,2.92)
H+FH reaction
10.0 0.853 0.449 (2.126,2.129)
20.0 0.495 0.249 (2.226,2.224)
40.0 0.361 0.181 (2.39,2.39)
80.0 0.257 0.128 (2.62,2.62)

Ry (Bohr)

TR .

S
T

R, (Bohr)
w
I

Ry (Bohr)

Fig. 10 Least-7(—20) paths for F+H; (upper panel) and H+HF (lower panel) reactions calculated by back-
tracing for E=80 kcal/mol. The paths are exactly the least-potential energy path. Least-time path for this
energy follows the higher energy region (see Fig.9)
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Finally, we also have calculated the least-7(=2% path for both the reactions. These
paths are shown in Fig. 10. As discussed in Sect. 2.1, the minimum energy path has
no kinetic contribution and hence has no direct dynamical interpretation. This path is
very close to the minimum energy path. Nevertheless, MEP has great theoretical and
chemical importance. A uniquely defined and computable MEP forms the basis for
the reaction rate theories. e.g., transition state theory (TST) or variational transition
state theory (VTST). Typically, the MEP has the greatest statistical weight at any tem-
perature, so the maxima on the MEP are the good candidates for the transition state
(TS). From the knowledge of the MEP, the TST can give quite accurate estimates of
the reaction rates.

5 Conclusion

In this paper, we have presented a new numerical method for solving the Hamilton-
Jacobi equation in a general coordinate system. The method variationally determines
the “fastest” ray that emanates from a fixed source point (taken as the reactant state
configuration in our results) and arrives at any point in the configuration space. The
minimum cost (that is, the minimum 7 ™) associated with these rays are also calculated
variationally, which is then used to compute the reaction path. We have implemented
this new method and showed some results for two reactive systems represented by a
two-dimensional curvillinear coordinate system. The method provides a new way of
predicting the products in any coordinate systems. The method differs from the tradi-
tional ones where the problem is posed as a initial value one (Rg, Py) or a boundary
value one (R, Ry). This method does not require any optimization even though we
are calculating the least-t " paths.

Extension of the method to include chemical dynamics in more complex molecular
systems will require several computational developments. For example, a good inter-
polation scheme needs to be developed for evaluating the gradient from the known
discrete values of the action/time; this is especially important for systems with many
dimensions. The existence of the cusp in the least-action level curves and its behav-
iour must be throughly explored in order to construct a smooth least-action path. The
approach has been tested with small systems where the potential energy surface is
known analytically. It is clear this will not be the case in most chemical systems
and one would need to evaluate the PES at every point picked by the fast marching
machinery, preferably by using the available general purpose quantum mechanical
codes. We are presently working in these direction, so that this approach will be useful
in molecular dynamics involving larger molecular systems.
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